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Abstract. In atom interferometers based on two photon transitions, the delay induced by the difference
of the laser beams paths makes the interferometer sensitive to the fluctuations of the frequency of the
lasers. We first study, in the general case, how the laser frequency noise affects the performance of the
interferometer measurement. Our calculations are compared with the measurements performed on our cold
atom gravimeter based on stimulated Raman transitions. We finally extend this study to the case of cold
atom gradiometers.

PACS. 39.20.+q Atom interferometry techniques – 32.80.Pj Optical cooling of atoms; trapping – 06.20.-f
Metrology

1 Introduction

Atom interferometry allows to realize measurements in
the fields of frequency metrology [1], inertial sensors [2,3],
tests of fundamental physics [4–6], by splitting an atomic
wave function into separated wave packets. The difference
in the quantum phases accumulated by the wave pack-
ets can be extracted from the interference pattern ob-
tained when recombining them. Among the various types
of coherent beam splitters developed for matter wave ma-
nipulation [7–11], two photon transitions have proven to
be powerful tools for precise measurements. For instance,
atom interferometers based on Bragg transitions [8] can
be used for polarisability [12] and fundamental measure-
ments [13]. On the other hand, stimulated Raman tran-
sitions [14] allowed the development of high precision in-
ertial sensors [15–18], whose performances compete with
state of the art instruments [19,20].

In the case of interferometers based on two photon
transitions, atomic wave packets are split and recom-
bined with light pulses of a pair of counter-propagating
laser beams, which couple long lived atomic states. The
sensitivity of such interferometers arises from the large
momentum transfer of counter-propagating photons. A
propagation delay is unavoidable between the two counter-
propagating beams at the position of the atoms. As al-
ready stated in [17], this delay makes the interferometer
measurement sensitive to the lasers frequency noise. This
last paper considered the influence of a laser frequency
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jitter, and showed that the sensitivity degradation scales
linearly with the propagation delay. In this paper, we
investigate this effect for a very general laser frequency
noise, and quantify its influence on the sensitivity of an
interferometer. The study is realized in the case of our
gravimeter, based on stimulated Raman transitions. How-
ever, the formalism presented here can be applied to any
type of interferometer where two photon transitions are
used as beam splitters.

The sensitivity to inertial forces of such an interfer-
ometer arises from the imprinting of the phase difference
between the lasers onto the atomic wave function [21]. As
temporal fluctuations in the laser phase difference affect
the measurement of the atomic phase, a high degree of
phase coherence is required. This coherence can be ob-
tained either by using two sidebands of a single phase
modulated laser [2], or by locking the phase difference be-
tween two independent lasers [22,23]. In both cases, the
phase relation is well determined only at a specific posi-
tion, where the laser is modulated or where the frequency
difference is measured. Between this very position and the
atoms, the phase difference will be affected by fluctuations
of the respective paths of the two beams over the propa-
gation distance. In most of the high sensitivity atom inter-
ferometers, the influence of path length variations is min-
imized by overlapping the two beams, and making them
propagate as long as possible over the same path. The
vibrations of any optical element shift the phase of each
laser, but do not strongly disturb their phase difference
as long as the lasers co-propagate, because their optical
frequencies are very close. However, for the interferome-
ter to be sensitive to inertial forces, the two beams (with
wave vectors k1 and k2) have to be counter-propagating.
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The two overlapped beams are thus directed to the atoms
and retro-reflected. Among the four beams actually sent
onto the atoms, two will realize the interferometer pulses.
As a consequence, the reflected beam is delayed with re-
spect to the other one. Then, the phase difference at the
atoms position is affected by the phase noise of the lasers,
accumulated during this reflection delay [17].

In this article, we pay more attention to this effect
and investigate both theoretically and experimentally the
influence of the delay on the sensitivity of an atom in-
terferometer. In the following section, we briefly describe
our experimental setup. The transfer function of the in-
terferometer phase noise with respect to the Raman laser
frequency noise is derived in Section 3, and compared with
experimental measurements. In Section 4, we demonstrate
the sensitivity limitations induced by the retro-reflection
delay of the lasers in the case of our atomic gravimeter.
We then discuss how such limitations could be overcome.
The discussion is finally extended to the case of high pre-
cision gradiometers, whose performances might be limited
by their intrinsic propagation delays.

2 Experimental setup

Our interferometer is a cold atom gravimeter based on
stimulated Raman transitions, which address the two hy-
perfine sublevels F = 1 and F = 2 of the 5S1/2 ground
state of the 87Rb atom. We use successively a 2D-MOT,
a 3D-MOT and an optical molasses to prepare about 107

atoms at a temperature of 2.5 µK, within a loading time
of 50 ms. The intensity of the lasers is then adiabati-
cally decreased to drop the atoms, and we detune both
the repumper and cooling lasers from the atomic tran-
sitions by about 1 GHz to obtain the two off-resonant
Raman lasers. A description of the compact and agile
laser system that we developed can be found in [24]. The
preparation sequence ends with the selection of a nar-
row velocity distribution (σv ≤ vr = 5.9 mm/s) in the
|F = 1, mF = 0〉 state, using a combination of microwave
and optical pulses.

A sequence of three pulses (π/2−π−π/2) then splits,
redirects and recombines the atomic wave packets. At
the output of the interferometer, the transition proba-
bility from an hyperfine state to the other is given by
the usual formula of two waves interferometers: P =
1
2 (1 + C cos∆Φ), where C is the contrast of the fringes,
and ∆Φ the difference of the atomic phases accumulated
along the two paths. We measure by fluorescence the
populations of each of the two states and deduce the
transition probability. The difference in the phases ac-
cumulated along the two paths depends on the accel-
eration a experienced by the atoms. It can be written
as ∆Φ = φ(0) − 2φ(T ) + φ(2T ) = −keff · aT 2, where
φ(0, T, 2T ) is the phase difference of the lasers at the lo-
cation of the center of the atomic wavepackets for each of
the three pulses [25], keff = k1 − k2 is the effective wave
vector (with |keff | = k1 + k2), and T is the time interval
between two consecutive pulses [2].
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Fig. 1. Experimental scheme of the cold atom gravimeter.
The two Raman lasers L1 and L2 are guided from the optical
bench to the atoms by the same optical fiber, and the resonant
counter-propagating beams are obtained by retro-reflecting the
lasers with the mirror at the bottom of the vacuum chamber.
Due to the Doppler shift of the falling atoms, only L1 and L′

2

can drive the Raman transitions. QWP: quarter wave plate.

The Raman light sources are two extended cavity
diode lasers, amplified by two independent tapered am-
plifiers. Their frequency difference is phase locked onto a
microwave reference source generated by multiplications
of highly stable quartz oscillators. The two Raman laser
beams are overlapped with a polarization beam splitter
cube, resulting in two orthogonally polarized beams. First,
a small part of the overlapped beams is sent onto a fast
photodetector to measure an optical beat. This beat-note
is mixed down with a reference microwave oscillator, and
compared to a stable reference RF frequency in a Digital
Phase Frequency Detector. The phase error signal is then
used to lock the laser phase difference at the very posi-
tion where the beat is recorded. The phase locked loop
reacts onto the supply current of one of the two lasers
(the “slave” laser), as well as on the piezo-electric trans-
ducer that controls the length of its extended cavity. The
impact of the phase noise of the reference microwave oscil-
lator on the interferometer sensitivity, as well as the per-
formances of the PLL, has already been studied in [26].
Finally, the two overlapped beams are injected in a polar-
ization maintaining fiber, and guided towards the vacuum
chamber. We obtain the counter-propagating beams by
laying a mirror and a quarterwave plate at the bottom of
the experiment. As displayed in Figure 1, four beams (L1,
L2, L′

1, L′
2) are actually sent onto the atoms. Because of

the selection rules and the Doppler shift induced by the
free fall of the atoms, only the counter-propagating pair
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L1/L′
2 drives the Raman transitions. In the following, we

define L1 as the “master” laser, and L2 as the “slave” one.

3 Influence of the propagation delay
on the interferometer phase noise

3.1 Theoretical expression of the transfer function

The phase difference ϕ imprinted onto the atoms by the
counter-propagating beams is given by ϕ(t) = ϕ1(t) −
ϕ2′(t), where ϕ1 and ϕ2′ are respectively the phases of
the downward-propagating master laser and of the retro-
reflected slave laser. Because of the retro-reflection, the
phase of L′

2 writes as ϕ2′(t) = ϕ2(t − td). The retro-
reflection delay td is given by td = 2L/c, where L is the
distance between the atoms and the bottom mirror. We
consider here a perfect phase locked loop, which guaran-
tees the stability of the phase difference for copropagating
lasers. Then ϕ2(t−td) = ϕ1(t−td)+ω0(t−td), where ω0 is
the frequency difference between the two lasers. Since we
assume ω0 is perfectly stable, its contribution will vanish
in the interferometer phase ∆Φ. Thus, we do not take it
into account when writing the laser phase difference, and
finally obtain ϕ(t) = ϕ1(t) − ϕ1(t − td).

As shown in [26], the interferometer phase shift Φ
induced by fluctuations of ϕ can be written as:

Φ =
∫ +∞

−∞
g(t)

dϕ(t)
dt

dt (1)

where g(t) is the sensitivity function of the interferom-
eter. This function quantifies the influence of a relative
laser phase shift δφ occurring at time t onto the transi-
tion probability δP (δφ, t). It is defined in [27] as:

g(t) = 2 lim
δφ→0

δP (δφ, t)
δφ

. (2)

We consider an interferometer with three pulses π/2−π−
π/2 of durations respectively τR − 2τR − τR. If the time
origin is chosen at the center of the π pulse, t �→ g(t) is
an odd function. Its following expression for positive time
is derived in [26]:

g(t) =

⎧⎨
⎩

sinΩRt for 0 < t < τR

1 for τR < t < T + τR

− sinΩR(T − t) for T + τR < t < T + 2τR

(3)

where ΩR is the Rabi pulsation.
In the presence of fluctuations of the master Raman

laser frequency, the interferometer phase shift becomes:

Φ =
∫ +∞

−∞
dt g(t)

dϕ(t)
dt

=
∫ +∞

−∞
dt g(t)

[
dϕ1(t)

dt
− dϕ1(t − td)

dt

]
. (4)

If no assumption is made on the distance L between the
mirror and the atoms, the retro-reflection delay td is not

the same for the three pulses. However, the maximum
duration of our interferometer is 100 ms, corresponding
to a 5 cm atomic path, much smaller than the distance
L ≈ 50 cm. We can thus consider td constant during the
measurement, and write the interferometer phase shift as:

Φ =
∫ +∞

−∞
dt [g(t) − g(t + td)]

dϕ1(t)
dt

= 2π

∫ +∞

−∞
dt [g(t) − g(t + td)] ν1(t)dt. (5)

We deduce from (5) that the transfer function Z, which
converts Raman laser frequency noise into interferometer
phase noise, is given by the Fourier transform of the dif-
ference g(t) − g(t + td). After some algebra, we find:

Z(f, td) = −ie−iωtd/2tdH(2πf)
sin (πftd)

πftd
(6)

where H(ω) = ω

∫
g(t)eiωtdt is the weighting function

describing the response of the interferometer phase to the
fluctuations of the laser phase difference, as already de-
scribed in [26]. A remarkable feature of the function H(ω)
is a low pass first order filtering, arising from the fact that
the response time of the atoms to a perturbation is neces-
sarily limited by the Rabi frequency. The cutoff frequency
is given by fc =

√
3ΩR/6π =

√
3/12τR.

In our experimental setup, the delay time is about td =
3 ns. Since the cut-off frequency fc is roughly 20 kHz, we
can assume that fctd � 1. The amplitude of the transfer
function is finally:

|Z(f, td)| ≈ td |H(2πf)| . (7)

3.2 Measurement of the transfer function

In order to measure the amplitude of Z(f), we modulate
the master laser frequency at a frequency f . The applied
frequency modulation is detected in the beat-note between
the master laser and a reference laser, locked on a atomic
line of the 87Rb by a saturated spectroscopy setup. The
frequency of the beat-note is converted into a voltage mod-
ulation by a frequency to voltage converter (FVC). When
the modulation is not synchronous with the cycle rate, the
response of the interferometer appears as a periodic mod-
ulation of its phase. Its amplitude is the modulus of the
transfer function, and the apparent period of the response
depends on the ratio f/fs, where fs is the sampling rate
of the experiment. For these measurements, the cycle rate
was fs = 4 Hz.

We choose the modulation frequency as f = (n +
1/10)fs and record the transition probability from which
we extract the transfer function amplitude |Z(f, td)|. We
run the experiment with a modest interrogation time of
2T = 2 ms, which allows us to reach a good signal to noise
ratio (SNR) of 250 per shot for the detection of the per-
turbation. As the interferometer phase shift scales as the
square of T , best sensitivities to inertial forces are usually
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Fig. 2. Transfer function Z of the frequency noise of the laser
for three optical lengths. The experimental points and the the-
oretical curves (see Eq. (7)) are in good agreement.

obtained for large values of T . However, in that case, the
interferometer also becomes more sensitive to vibrations,
which limit the SNR to about 50 in our experiment when
2T = 100 ms.

Figure 2 displays the measured and calculated transfer
function Z as a function of the modulation frequency f ,
for three values of the retro-reflection length: 2L = 93, 118
and 150 cm. The weighting function zeros occur when the
period of the perturbation is a multiple of T +2τR. In that
case, the phase of the perturbation is the same for each
of the three pulses, and the corresponding interferometer
phase shift ∆Φ = ϕ1 − 2ϕ2 + ϕ3 vanishes. One can see
in Figure 2 that the experimental points agree with the
calculation (Eq. (7)), demonstrating that the amplitude
of Z increases linearly with the time delay td.

We also test further the relation between our measure-
ment of the transfer function and the weighting function
H(ω) [26]. We measure the transfer function for a fixed
value of td, for frequencies respectively lower and higher
than the low pass cut-off frequency fc. In our case, a π/2
pulse is 6 µs long, so fc is about 24 kHz. The measure-
ments are presented in Figure 3. For f � fc, there is a
slight shift between the measurement and the theoretical
expression of Z. We tested out various possible origins like
the duration and timings of the pulses, the synchroniza-
tion of the frequency synthesizer we used to modulate the
laser frequency and the clock frequency of the experiment,
but this shift is still not understood. However it does not
affect the value of the variance integrated over the whole
spectrum (see Eq. (10)).

4 Limits on the interferometer sensitivity

4.1 Theoretical analysis

We finally quantify the degradation of the interferometer
sensitivity as a function of laser frequency noise level and
of the optical delay. Using equation (5), the variance of
the phase fluctuation is given by:

σ2
Φ = 4π2

∫ +∞

0

|Z(ω)|2 Sν1(ω)
dω

2π
(8)

Fig. 3. Calculation and measurement of the transfer func-
tion for low (a) and high (b) frequencies (with respect to
fc ≈ 24 kHz) of master frequency modulation. For these mea-
surements, the back and forth distance between the atoms and
the mirror is 2L = 93 cm.

where Sν1 is the power spectral density (PSD) of the mas-
ter laser frequency noise. Then, using equation (6), one
writes the variance as:

σ2
Φ = 4π2

∫ +∞

0

4 sin2

(
ωtd
2

) |H(ω)|2
ω2

Sν1(ω)
dω

2π
. (9)

The same approximation than before (πftd � 1) leads to
the final expression:

σ2
Φ ≈ 4π2t2d

∫ +∞

0

|H(ω)|2 Sν1(ω)
dω

2π
. (10)

According to this formula, the interferometer sensitivity
σΦ increases linearly with the retro-reflection length. In
the case of a white frequency noise (Sν1(ω) = S0

ν1
), the

variance is:

σ2
Φ ≈ π4

τR
t2d S0

ν1
. (11)

This last result provides a simple evaluation of the level of
white frequency noise required to reach a given sensitivity,
for given retro-reflection delay and Raman pulse duration.

4.2 Example of the laser frequency noise influence

In a second experiment, the frequency noise is deliberately
degraded by adding noise on the master laser current. We
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Fig. 4. PSD of the frequency noise of the master laser. The
curve (a) shows a typical unperturbed power spectrum of the
laser. The other curves correspond to the PSD with added noise
on the laser current, for different cut-off frequencies of the low
pass filter: (b) 10 kHz, (c) 15 kHz, (d) 20 kHz.

use a high gain amplifier with an incorporated tunable low
pass filter (Stanford Research System SR650) as the noise
source, with its input connected to ground. We basically
control the amount of RMS frequency noise by changing
the cut-off frequency of the filter (see Fig. 4). The PSD of
the master laser frequency noise is measured by analyz-
ing the FVC output with a FFT analyzer (we made sure
it is well above the PSD of the reference laser to which
the master laser is compared). We also measure the power
spectrum of the laser without additional noise, and we cal-
culate the two corresponding variances, with or without
added noise, using equation (10). The difference between
the two variances gives the expected variance degrada-
tion ∆σ2

Φ of the interferometer phase noise. We compare
this calculation with the experimental value of ∆σ2

Φ ob-
tained by measuring the difference between the variances
of the interferometer phase with and without added noise.
The experiment was performed for 2L = 93 cm, and Fig-
ure 5 shows the comparison between the calculated and
the measured values of the variance degradation. The ex-
perimental values agree very well with the result of the
calculation.

From the nominal frequency noise spectrum (curve (a)
in Fig. 4), we estimate that the retro-reflection induces a
laser frequency noise contribution of 2.0 mrad/shot to the
total interferometer noise.

5 Discussion

5.1 Sensitivity limitation of the gravimeter
measurement

This contribution of the frequency noise does not depend
on the duration 2T of our interferometer. Indeed, as dis-
cussed before, the retro-reflection delay td can be consid-
ered as constant even for the longest interferometer we can

Fig. 5. Comparison between calculated and measured degra-
dations of the phase sensitivity, for different added noise. The
point (a), where ∆σ2 = 0, corresponds to the case where no fre-
quency noise is added. The points (b), (c) and (d) correspond
to the power spectra displayed in Figure 4.

perform. Moreover, dominant contributions to the vari-
ance arise from the high frequency part of the laser fre-
quency noise spectrum, for which the fast oscillations of
the transfer function average to the same value, regardless
to 2T .

The calculated laser frequency noise contribution in-
duced by the retro-reflection is of the same order of
magnitude than the other sources of phase noise also
due to the lasers. Indeed, the PLL noise contributes
for 2.1 mrad/shot [26], the various frequency references
for 1.6 mrad/shot, and the propagation in the optical fiber
for 1.0 mrad/shot. All these noise sources are independent,
so the frequency noise of the Raman lasers represents a
total contribution of σΦ = 3.5 mrad/shot to the interfer-
ometer phase sensitivity.

With 2.0 mrad/shot, the retro-reflection contribution
limits the sensitivity of the acceleration measurement up
to σg = 2.5 × 10−9 g/

√
Hz with our experimental param-

eters (2T = 100 ms, τR = 6 µs, L = 93 cm, and cycle rate
4 Hz). However, the interferometer sensitivity is presently
limited to 2 × 10−8 g/

√
Hz by the vibration noise.

We want to emphasize here that our ECDL have ex-
cellent white frequency noise floor, which corresponds to
a linewidth of only 5 kHz. Excess 1/f noise at low fre-
quency is inherent to the diode lasers. It could be reduced
more efficiently by using other locking techniques which
allow larger bandwidths [28–30]. Other laser sources based
on frequency doubled fiber lasers, whose frequency noise
is extremely low, could be beneficial [31,32]. On the con-
trary, free DBR laser diodes, whose linewidth is typically
a few MHz, are not recommended.

The sensitivity may be improved by using longer
Raman pulses. In the case of a white frequency noise,
equation (11) indicates that the sensitivity scales as
1/

√
τR. However, the frequency noise of a locked laser is

generally colored, so that the gain in sensitivity depends
on the features of the frequency spectrum. Considering
the spectrum of our laser (curve (a) in Fig. 4), we can
distinguish several cases. For cutoff frequencies fc slightly
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lower than the bandwidth of the frequency lock loop fBW

(fc � fBW ), increasing τR (i.e. decreasing fc) reduces the
frequency noise contribution faster than 1/

√
τR. For ex-

ample, we find σΦ = 1.5 mrad/shot for τR = 20 µs, and
0.57 mrad/shot for the fourfold duration τR = 80 µs. On
the contrary, when fc � fBP the phase noise decreases
slower than 1/

√
τR. For a 1 µs (resp. 4 µs) pulse dura-

tion, σΦ = 2.7 mrad/shot (resp. 2.2 mrad/shot). For the
asymptotic cases fc � fBP or fc � fBP , the interfer-
ometer phase noise is dominated by the frequency noise
inside or far outside of the bandwidth, where the noise is
in general white. Hence the sensitivity scales as 1/

√
τR in

both cases.
However, when the duration τR is larger, the velocity

selectivity of the pulses becomes more stringent. Then the
contribution of useful atoms to the signal is smaller, and
the detection noise is larger. Even for the lowest temper-
atures one can reach with σ+ − σ− cooling, the increase
of τR reduces either the contrast when no primary veloc-
ity selection is performed, or the number of atoms in the
measurement. Ultra-cold atoms, obtained by evaporative
or sideband cooling, would be of interest [33,34].

The sensitivity can also be improved by bringing the
mirror closer to the atoms. Presently, our mirror is lo-
cated at the bottom of the experiment, out of the magnetic
shields. Ultimately the mirror could be installed inside the
vacuum chamber, very close to the atoms. In this ideal sit-
uation, the laser propagation delay cannot be considered
constant for the three pulses anymore. The maximum de-
lay scales as the trajectory length, which is proportional
to T 2. On the other hand, the sensitivity to inertial forces
also scales as T 2 when going to large interaction times.
Hence, the sensitivity limit on the inertial measurement
induced by the propagation delay, does not depend on T
for ground instruments. The situation is more favorable for
space based instruments [32] where the distance between
the atoms and the retro-reflection mirror would scale like
the separation of the wavepackets, meaning only like T .

5.2 Influence on gradiometers measurement

The formalism developed here could finally be useful to
determine the ultimate performances of cold atom gra-
diometers. In such experiments, two atomic clouds are spa-
tially separated and realize simultaneously gravity mea-
surements [17,35]. Most of the phase noise contributions
are rejected thanks to the differential measurement, when
the clouds experience the same Raman lasers. However,
as the lasers propagation delays are not the same for the
two spaced interferometers, the laser frequency noise do
not cancel. Let us consider the simple case where the
atomic sample S2 is very close to the retro-reflection mir-
ror, whereas the other S1 is half a meter above. While
the phase noise induced by the laser L′

2 propagation is
negligible for S2, for the other sample S1 this phase noise
contribution would reach the 2.0 mrad/shot that we cal-
culated for a single sample located at L = 93/2 cm, with
our laser setup. A remarkable point is that this phase noise
contribution scales like the distance L = ctd/2, just like
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Fig. 6. Possible setup of a cold atom gradiometer, where two
samples S1 and S2 are used for two simultaneous interferome-
ters. Their separation d keeps constant all along their trajec-
tories, and the phase noise induced by the frequency noise of
L′

2 during the retro-reflection only depends on d.

the sensitivity of the gradiometer measurement [17]. Hence
there would be no advantage in increasing the separation
between the samples, as long as one do not increase the
interaction time 2T .

In the more common configuration where the samples
are given the same initial velocity, the distance d between
them remains constant during their trajectories. It is then
quite straightforward that the gradiometer phase noise in-
duced by the lasers propagation delays only depend on the
separation d. Thus the sensitivity limit is also given by the
equation (10), with td = 2d/c. The variance in the case of
a white frequency noise is then:

σ2
Φ ≈ 4

π4

τR

d2

c2
S0

ν1
. (12)

Using our experimental setup, with the parameters men-
tioned before, the best sensitivity would be thus 50 E/

√
Hz

(1 E = 10−9 s−2). Let us consider now an atomic fountain
configuration with a vertical separation d = 1 m of the
two samples, and a trajectory height of 1 meter too (see
Fig. 6). This trajectory is obtained for an initial velocity
of 4 m/s, and the apogee is reached after a time interval of
450 ms, which defines the maximum interaction time T .
A laser linewidth as small as 1 kHz (corresponding to a
white frequency noise of about Sν = 320 Hz2/Hz) would
allow to obtain a stability measurement of 0.1 E/

√
Hz (for

a standard pulse duration τR = 10 µs and a cycle rate of
1 shot/s).
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6 Conclusion

We have investigated the influence of the optical propaga-
tion delays on the phase noise of an atom interferometer
based on two photon transitions. The transfer function for
the laser frequency fluctuations has been calculated and
measured for various optical paths with our cold atom
gravimeter. Quantitative measurements of the interferom-
eter sensitivity have also been performed, which show that
the laser frequency noise can limit the sensitivity of the in-
terferometer. A necessary effort must therefore be placed
to reduce the laser frequency noise. We apply the present
formalism to the case of atomic gradiometers, where the
other sources of interferometer phase noise are rejected.
Our model can be used to estimate the required frequency
laser noise for a given sensitivity. This work presents inter-
est for space-borne experiments as well, where interaction
times can be much longer, and where the effect of the
lasers propagation could constitute a technical limitation.

The authors would like to thank the Institut Francilien pour la
Recherche sur les Atomes Froids (IFRAF), the Centre National

des Études Spatiales (contract no. 02/CNES/0282), the Euro-
pean Union (FINAQS) for financial support. P.C. and J.L.G.
thank DGA for supporting their works.

References

1. G. Santarelli, Ph. Laurent, P. Lemonde, A. Clairon, Phys.
Rev. Lett. 82, 4619 (1999)

2. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)
3. F. Riehle, Th. Kisters, A. Witte, J. Helmcke, Ch. J. Bordé,
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Landragin, P. Bouyer, Phys. Rev. Lett. 97, 010402 (2006)

19. T.M. Niebauer, G.S. Sasagawa, J.E. Faller, R. Hilt, F.
Klopping, Metrologia 32, 159 (1995)

20. K.U. Schreiber, A. Velikoseltsev, M. Rothacher, T. Klugel,
G.E. Stedman, D.L. Wiltshire, J. Geophys. Res. 109
B06405 (2004)
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25. C.J. Bordé, Metrologia 39, 435 (2002)
26. P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet,

F. Leduc, A. Landragin, IEEE Trans. Instrum. Meas. (sub-
mitted), arXiv:physics/0510197 (2005)

27. G.J. Dick, Local Oscillator induced instabilities, in Proc.
Nineteenth Annual Precise Time, Time Interval (1987)
pp. 133–147

28. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M.
Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

29. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876
(1987)

30. V. Crozatier, F. de Seze, L. Haals, F. Bretenaker, I.
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